Harmonic Drive gear Precision Gearing and Motion Control #### **Contents** | Compact, High Ratio, In-Line Gearing | 2 | |--|---| | The Basic Component Set | 2 | | Configuration | 3 | | Typical Installation | 3 | | Ordering Information | 3 | | Dimensions | 4 | | Performance Ratings | 5 | | Lubrication | 6 | | Installation | 6 | | Efficiency | 7 | | No-Load Running Torque, Starting Torque, and Back Driving Torque | 7 | ## Compact, High Ratio, In-Line Gearing Harmonic Drive® FB "Pancake" type component set offers the designer high ratio, in-line mechanical power transmissions in extremely compact configurations. The component set consists of four elements: the Wave generator, an elliptical bearing assembly; the Flexspline, a non-rigid ring with external teeth; and the Circular Spline and the Dynamic Spline, rigid internal gears. Rotation of the Wave Generator imparts a rotating elliptical shape to the Flexspline causing progressive engagement of its external teeth with the internal teeth of the Circular Spline and the Dynamic Spline. The fixed Circular Spline has two more teeth than the Flexspline, thereby imparting relative rotation to the Flexspline at a reduction ratio corresponding to the difference in the number of teeth. With the same number of teeth, the Dynamic Spline rotates with and at the same speed as the Flexspline. ## The Basic Component Set - 1) The Wave generator (WG) is a thin raced bearings assembly fitted onto an elliptical plug, and normally is the rotating input member. - 2) The Flexspline (FS) is a non-rigid ring with external teeth on a slightly smaller pitch diameter than the Circular Spline. It is fitted over and is elastically deflected by the Wave Generator. - 3) The Circular Spline (CS) is a rigid ring with internal teeth, engaging the teeth of the Flexspline across the major axis of the Wave Generator. - (4) The Dynamic Spline (DS) is a rigid ring having internal teeth of same number as the Flexspline. It rotates together with the Flexspline and serves as the output member. It is identified by chamfered corners at its outside diameter. ## **Configurations** 1) Reduction Gearing WG Input CS Fixed DS Output Ratio as listed Input and output in opposite direction. Output 2) Reduction Gearing WG Input **CS** Output DS Fixed Ratio $\frac{1}{R+1}$ Input and output in same direction. 3) Reduction Gearing WG Fixed **CS** Output DS Input Ratio $\frac{R}{R+1}$ Input and output in same direction. Input 4) Differential WG Control Input CS Main-drive Input DS Main-drive Output Numerous differential functions can be obtained by combinations of speeds and rotations on the three shafts. ## Typical Installation FB "pancake" type component sets are easier to use than conventional gearing. All that is required is suitable bearing support for the input and output shaft, and a means of fixing the circular spline against rotation. The simplicity of FB component sets is demonstrated in the typical arrangements shown below. - 1. Wave Generator - 2. Flexspline - 3. Circular Spline - 4. Dynamic Spline - 5. Motor - 6. Input Shaft or Motor Shaft - 7. Output Shaft ## **Ordering Information** ## **Dimensions** | FB | A | В | С | D | E | F1 | F2 | G | ы Н <u>Г</u> | l j | | | | М | N | х | , | Wt | | | |----|----------------------|----------|-----|------|------|------|------|-----|--------------|--|-----|----------|----------|-----|-----|------|-----|-----|-----|-----| | гь | (g7) | P | ີ | " | - | F: | F2 | ď | " | (H7) | Max | (JS9) | | | IVI | IN . | ^ | ' | lb | kgf | | 14 | 50-0.009 | 5 | 0.5 | 10.5 | 15.0 | 3.75 | 0.75 | 44 | МЗ | 6+0.012 | 8 | _ | _ | 29 | 14 | _ | 0.2 | 1.0 | 0.2 | 0.1 | | 20 | 70-0.010 | 6 | 0.5 | 12.5 | 11.4 | 0.95 | 2.05 | 60 | M4 | 9+0.015 | 12 | 3±0.0125 | 10.4 | 42 | 20 | _ | 0.2 | 1.0 | 0.2 | 1.0 | | 25 | 85 ^{-0.012} | 8 | 0.5 | 16.5 | 12.8 | 0.35 | 3.35 | 75 | M5 | 14 +0.018 | 15 | 5±0.0150 | 16.3 | 53 | 26 | 0.9 | 0.2 | 1.5 | 1.1 | 0.5 | | 32 | 110-0.012 | 10 | 0.5 | 20.5 | 15.6 | 0.95 | 3.95 | 100 | M6 | 14 +0.018 | 15 | 5±0.0150 | 16.3 | 69 | 26 | 0.8 | 0.2 | 1.5 | 2.2 | 1.0 | | 40 | 135-0.014 | 13 | 1 | 27.0 | 19.4 | 1.80 | 5.80 | 120 | M8 | 14 +0.018 | 20 | 5±0.0150 | 16.3 | 84 | 32 | 1.2 | 0.4 | 2.0 | 4.0 | 1.8 | | 50 | 170-0.014 | 16 | 1 | 33.0 | 23.2 | 2.90 | 6.90 | 150 | M10 | 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 20 | 6±0.0150 | 21.8 | 105 | 32 | 1.1 | 0.4 | 2.0 | 6.4 | 2.9 | Maximum housing I.D. for Flexspline axial containment is L. The surface hardness in the region where the Flexspline abuts the housing is recommended to be HRC 29–34. # **Performance Ratings** | FB | FB Gear Ratio Speed | | Rated Torque
at 2000rpm | | Repeated
Peak Torque | | Max. Aver-
age Load
Torque | | Max.
Momentary
Torque | | Max. Input
Speed rpm | | Limit for
Average Input
Speed, rpm | | Moment of
Inertia** | | Backlash***
arc min. | | |----|---------------------|------|----------------------------|-------|-------------------------|-------|----------------------------------|-------|-----------------------------|-------|-------------------------|----------------|--|----------------|------------------------|--------|-------------------------|--------------| | | | rpm | N.m | ln.lb | N.m | ln.lb | N.m | In.lb | N.m | In.lb | Oil
Lub. | Grease
Lub. | Oil
Lub. | Grease
Lub. | kg-
cm ² | lb-in² | Opti-
mized | Non-
Opt. | | | 50 | | 2.6 | 23 | 3.2 | 28 | 3.2 | 28 | 6.9 | 61 | | | | | | | | | | | 88 | | 4.9 | 43 | 7.8 | 69 | 7.8 | 69 | 15.7 | 139* | | | | | | 0.011 | 3 | | | 14 | 100 | 2000 | 5.9 | 52 | 9.8 | 87 | 9.8 | 87 | 15.7 | 139* | 6000 | 3600 | 4000 | 2500 | 0.033 | | | 32 | | | 110 | | 5.9 | 52 | 9.8 | 87 | 9.8 | 87 | 15.7 | 139* | | | | | | | | | | | 50 | | 14 | 124 | 18 | 159 | 18 | 159 | 34 | 301 | | | | | | | | | | | 80 | | 17 | 150 | 21 | 186 | 21 | 186 | 35 | 310 | | | | | 0.14 | 0.048 | 3 | | | 20 | 100 | 2000 | 22 | 195 | 26 | 230 | 25 | 221 | 47 | 416 | 6000 | 3600 | 3600 | 2500 | | | | 32 | | | 128 | | 24 | 212 | 33 | 292 | 25 | 221 | 58 | 513 | | | | | | | | | | | 160 | | 24 | 212 | 38 | 336 | 25 | 221 | 59 | 522* | | | | | | | | | | | 50 | | 23 | 204 | 30 | 266 | 30 | 266 | 54 | 478 | | | 3000 | | | 0.12 | | | | | 80 | | 31 | 274 | 39 | 345 | 39 | 345 | 70 | 620 | | | | | | | | | | 25 | 100 | 2000 | 39 | 345 | 52 | 460 | 52 | 460 | 91 | 805 | 5000 | 3600 | | 2500 | 0.36 | | 3 | 30 | | | 120 | | 39 | 345 | 61 | 540 | 61 | 540 | 94 | 832* | | | | | | | | | | | 160 | | 39 | 345 | 76 | 673 | 61 | 540 | 86 | 761* | | | | | | | | | | | 50 | | 44 | 389 | 60 | 531 | 60 | 531 | 108 | 956 | | | | | | | 3 | | | | 78 | | 63 | 558 | 75 | 664 | 75 | 664 | 127 | 1124 | | | | | 1.3 | 0.44 | | 24 | | 32 | 100 | 2000 | 82 | 726 | 98 | 867 | 98 | 867 | 176 | 1558 | 4500 | 3600 | 2500 | 2300 | | | | | | | 131 | | 82 | 726 | 137 | 1212 | 118 | 1044 | 235 | 2080* | | | | | | | | | | | 157 | | 82 | 726 | 157 | 1389 | 118 | 1044 | 235 | 2080* | | | | | | | | | | | 50 | | 88 | 779 | 118 | 1044 | 118 | 1044 | 216 | 1912 | | | | | | | | | | | 80 | | 118 | 1044 | 147 | 1301 | 147 | 1301 | 265 | 2345 | | | | | | | | | | 40 | 100 | 2000 | 157 | 1389 | 186 | 1646 | 186 | 1646 | 343 | 3036 | 4000 | 3300 | 2000 | 2000 | 3.4 | 1.2 | 3 | 24 | | | 128 | | 167 | 1478 | 235 | 2080 | 235 | 2080 | 372 | 3292* | | | | | | | | | | | 160 | | 167 | 1478 | 284 | 2513 | 274 | 2425 | 353 | 3124* | | | | | | | | | Torque value limited by "Ratceting". Moment of Inertia: 1=-1/4 GD². Backlash measured at output with the input locked, maximum value. #### Lubrication Oil lubrication ratings are based on Molub Alloy gear Oil No. 80. See table for recommended oil level and volume for horizontal shaft mounting. For vertical mounting the recommended level is at the wave generator bearing ball centerline or midpoint of the drive. | FB | 14 | 20 | 25 | 32 | 40 | 50 | | |----------------------------------|----|-----|------|------|------|------|------| | Oil Level Below Drive Centerline | mm | 7.6 | 12.7 | 15.2 | 17.8 | 23.0 | 30.5 | Grease lubricated ratings are based on Harmonic Grease SK-1A for size 12 to 100, and SK-2 for size 14. Alternate lubricants include Molub Alloy Grease No. 2, Shell Alvania EP 1 and their equivalents. For retention of grease within the tooth mesh area and the ball bearing, it is recommended that the L dimension (see FB Dimensions, page 4) be extended further inward to at least S. #### Installation The Dynamic Spline is distinguished by its chamfered outer edge. FB Component Sets may be operated in any attitude. Recommended installed relationships are shown below: ## Housing Tolerance | | | | | | | | | mm | |----|-------|-------|-------|-------|-------|-------|-------|-------| | FB | а | b | С | d | е | f | g | h | | 14 | 0.013 | 0.015 | 0.016 | 0.013 | 0.015 | 0.016 | 0.011 | 0.007 | | 20 | 0.017 | 0.016 | 0.020 | 0.017 | 0.016 | 0.020 | 0.013 | 0.010 | | 25 | 0.024 | 0.016 | 0.029 | 0.024 | 0.016 | 0.029 | 0.016 | 0.012 | | 32 | 0.026 | 0.017 | 0.031 | 0.026 | 0.017 | 0.031 | 0.016 | 0.012 | | 40 | 0.026 | 0.019 | 0.031 | 0.026 | 0.019 | 0.031 | 0.017 | 0.012 | | 50 | 0.028 | 0.024 | 0.034 | 0.028 | 0.024 | 0.034 | 0.021 | 0.015 | ## **Efficiency** Efficiency varies depending on input speed, ratio, load level, temperature, and type of lubrication. The effects of these factors are illustrated in the curves shown below. #### FB Efficiency vs. Ratio, Temperature, and Lubricant (At Rated Torque) #### Input Speed 500 rpm #### Input Speed 3400 rpm #### Input Speed 1700 rpm # No-Load Running Torque, Starting Torque, and Backdriving Torque | FB | | 14 | 20 | 25 | 32 | 40 | 50 | |---------------------------------|-------|-------|-------|--------|--------|--------|---------| | NL Running Torque
@ 1500 rpm | Ncm | 3~8 | 5~11 | 6~30 | 15~40 | 20~65 | 60~150 | | | oz-in | 4~11 | 7~15 | 8~42 | 20~56 | 28~90 | 83~210 | | Starting Torque | Ncm | 0.5~3 | 0.8~4 | 2~7 | 3~10 | 5~30 | 10~60 | | | oz-in | 0.7~4 | 1~6 | 3~10 | 4~14 | 7~42 | 14~83 | | Do aledricina Taracca | Nm | 0.8~7 | 2~10 | 3~38 | 4~40 | 8~60 | 20~110 | | Backdriving Torque | lb-in | 6~60 | 17~87 | 26~330 | 35~350 | 70~520 | 170~950 | Values quoted are based on actual tests with the component sets assembled in housings, and takes into consideration friction resistance of oils seals, and churning of oil. #### **Harmonic Drive LLC** **Boston US Headquarters** 247 Lynnfield Street Peabody, MA 01960 New York Sales Office 100 Motor Parkway Suite 116 Hauppauge, NY 11788 California Sales Office 333 W. San Carlos Street Suite 1070 San Jose, CA 95110 Chicago Sales Office 137 N. Oak Park Ave., Suite 410 Oak Park, IL 60301 T: 800.921.3332 T: 978.532.1800 F: 978.532.9406 #### **Group Companies** Harmonic Drive Systems, Inc. 6-25-3 Minami-Ohi, Shinagawa-ku Tokyo 141-0013, Japan Harmonic Drive AG Hoenbergstrasse, 14, D-6555 Limburg/Lahn Germany